Allelopathy as a potential strategy to improve microalgae cultivation
نویسندگان
چکیده
One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.
منابع مشابه
Site assessment for industrial mass cultivation of microalgae: case studies from Persian Gulf and Oman Sea coastal areas
Providing enough microalgae biomass is required for various applications in sectors such as food, medicine and energy. The biomass resources such as land, water, nutrient and carbon dioxide are essential in cultivation feasibility study for biomass production as well as cost benefits. The aims of this research is therefore, site assessment and prioritization of potential site locations, carbon ...
متن کاملSanitary Wastewater Supplemented with Glycerol to Obtain Lipid-Rich Microalgal Biomass
Introduction: Mixotrophic microalgae systems have great potential for bioenergy production and wastewater treatment. Anaerobic-treated wastewater supplemented with carbon can improve biomass yield and quality, as it presents low carbon content. Alternative carbon sources in microalgae cultivation, such as glycerol, are essential for minimizing the economic and environmental impacts caused by bi...
متن کاملDurum wheat and allelopathy: toward wheat breeding for natural weed management
Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting r...
متن کاملGrowing Chlorella vulgaris into bioreactors set in solar greenhouse, towards biofuel: Nutrient composition
Large scale microalgae cultivation actually represents a potential new source of renewable energy in the form of biofuel. Microalgae are individual plant cells which have the ability to photosynthesize and therefore utilize CO2, micronutrients and solar light to multiply and produce carbohydrates, lipids and proteins. Microalgae cultivation has several advantages over land grown crops. The majo...
متن کاملGrowing Chlorella vulgaris into bioreactors set in solar greenhouse, towards biofuel: Nutrient composition
Large scale microalgae cultivation actually represents a potential new source of renewable energy in the form of biofuel. Microalgae are individual plant cells which have the ability to photosynthesize and therefore utilize CO2, micronutrients and solar light to multiply and produce carbohydrates, lipids and proteins. Microalgae cultivation has several advantages over land grown crops. The majo...
متن کامل